

Navigation R&D Coastal Structures

Jeffrey A. Melby, PhD

Coastal and Hydraulics Laboratory US Army Engineer R&D Center

Coastal Structure R&D

Enterprise Coastal Inventory

http://chl.erdc.usace.army.mil/chl.aspx?p=s&a=Projects;246

Navigation R&D - Coastal Structures

AM Workshop - June 2008

Engineering Analysis

Physics-Based Empirical Equations

Armor Stability, Seaside Damage, Leeside Damage, Jetty and Breakwater Damage e.g. Melby and Hughes (CS 2003), CHETN III-71 Maximum force proportional to Maximum Wave Momentum Flux per unit crest length

Wave Momentum Flux

$$\frac{(M_F)_{\text{max}}}{\rho_w g h^2} = \frac{1}{2} \frac{H}{h} \frac{\tanh kh}{kh} + \frac{1}{8} \left(\frac{H}{h}\right)^2 \left[1 + \frac{2kh}{\sinh 2kh}\right]$$

Stability Number

$$N_{m} = \left(\frac{K_{a}(M_{F})_{\text{max}}}{(S_{r}-1)\rho_{w}gh^{2}}\right)^{1/2} \frac{h}{D_{n}}$$

Plunging Waves

$$N_m = 5.0(S/N_z^{0.5})^{0.2} P^{0.18} \sqrt{\cot \alpha}$$
 $s_m \ge s_{mc}$

Surging Waves

$$N_m = 5.0(S/N_z^{0.5})^{0.2} P^{0.18} (\cot \alpha)^{0.5-P} s_m^{-P/3} \qquad s_m < s_{mc}$$
$$s_{mc} = -0.0035 \cot \alpha + 0.03316$$

Engineering Analysis

RANS Model SAJ Reservoir Embankment

Optimize cross-section geometry and slab thickness

RMDamRisk → Major Rehab Toolkit

- Historical wave and water level time history at structure
- Compute extremal distributions
- Design structure cross sections for select return periods
 - Crest height, slopes, armor stone, toe stone, toe berm, compound slope, low crest...
- Simulate likely future wave and water level time histories
 - WELS, JP, EST, Monte Carlo 10,000 life-cycles
- For each return period cross-section, compute life-cycle damage, transmission, repair costs and consequence costs
- User input: Repair rules, fixed costs, material costs
- Compute PUPs for structural/functional limit states
- Compute total present worth and annualized costs
- Pick least cost alternative given damage criterion

Technical Report Summary of Primary Limit States

Lookup Table Tool

- Generate lookup tables with Boussinesq and RANS models
 - Wave runup and overtopping
 - Wave diffraction
 - Levee erosion
- To use lookup tables, enter nearshore bathym., structure, harbor geometry, wave and water level tool interpolates solution

Functional Assessment - Wave Transmission

- Generated lookup table of transmission coefficients for each save locations n (e.g. small boat harbor, coast guard slip)
- Wave transmission over breakwater $\longrightarrow \left(H_{t,BW}^2\right)_n = \sum_{m=1}^{10} \left(H_{i,BW} \sqrt{(C_{t,breach}^2)_n + C_{t,OT}^2}\right)_m^2$
 - Intact sections and breached sections
 - Produced general gap diffraction table

Waves through inlet

 $\rightarrow (H_{t,inlet}^2)_n = (H_{i,inlet}(C_{t,inlet})_n)^2$

Total Transmission: $(H_t)_n = \left(\sqrt{H_{t,inlet}^2 + H_{t,BW}^2}\right)_n$

Consequences * PUP = Risk

PUP = Probability of Unsatisfactory Performance

Annual probabilities computed from an engineering reliability model

Cost Examples

Emergency Repairs
Delay/Down Times for Users
Increased O & M Costs and/or Frequency
Damages to Infrastructure
Benefits Foregone

Probability of Exceeding Breakwater Damage Limit States

Probability of Exceeding Wave Transmission Limit States

U.S. Coast Guard Slip Return period of 50 years: $W_{50} = 7$ tons

Compute costs in

Total Present Worth Cost

First Cost Repairs Consequences
$$C_T = C_F \left(\frac{1}{1+p}\right)^{lag} + \sum_{m=lag}^{N+lag} \left[\sum_{x=1}^{X} P_{Rx}(t) C_{Rx} + \sum_{y=1}^{Y} K_B P_{Cy}(t) C_{Cy}\right] \left(\frac{1}{1+p}\right)^m$$
Sum different limit states and various repair classes

 C_F = initial construction costs

m = specific year in life cycle

Lag = time from analysis until initial construction

p =discount rate

 P_{Rx} = exceedance probability for damage limit state x

 C_{Rx} = repair cost for damage limit state x

 P_{Cy} = exceedance probability for transmission limit state y

 C_{Cy} = consequence cost for transmission limit state y

 K_B = breach cost factor to take into additional consequence costs when sections are breached

N = number of years in economic life

Total Costs

Alternative 4 is least total cost – No rehab, repair breaches

Conclusions

- Risk increasing
 - Increased vulnerability because built environment is more dense
 - Increased probability of severe damage with deteriorated structure/deferred maintenance
 - Increased storm frequency/intensity and SLR
- Models not that good and some don't exist (e.g. ice, stone breakage, laid up stone damage, trestle dumped stone stability)
- Cause and effect may not be clear
- Many projects have not had any rigorous engineering analysis, let alone a risk study
- Need risk to be defined relative to standard engineering practice
- Do we need a national PRA for coastal structures?

